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Discovery of Patterns in the Earth 
Science Data
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Data sources:
weather observation stations

earth orbiting satellites (since 1981)

modeled-based data

Goal: Better understand global scale patterns in 
biosphere processes, especially relationships between 
the global carbon cycle and the climate system.

Objectives: Develop data mining techniques to 
efficiently find spatio-temporal patterns in large Earth 
Science data sets.

Key Innovations:
• Clustering for the detection of climate indices
• Association analysis to discover relationships 

between climate variables 
• Automated detection of ecosystem disturbances
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Climate Indices: 
Connecting the Ocean/Atmosphere and the Land
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A climate index is a time 
series of sea surface 
temperature or sea level 
pressure

Climate indices capture 
teleconnections

The simultaneous variation in 
climate and related processes 
over widely separated points on 
the Earth
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Climate Indices - NAO

The North Atlantic Oscillation (NAO) is associated with climate 
variation in Europe and North America.

Normalized pressure differences between Ponta Delgada, 
Azores and Stykkisholmur, Iceland.

Associated with warm and wet winters in Europe and in cold and 
dry winters in northern Canada and Greenland 

The eastern US experiences mild and wet winter conditions.
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List of Well Known Climate Indices

Index Description 
 

SOI Southern Oscillation Index: Measures the SLP anomalies 
between Darwin and Tahiti 

NAO North Atlantic Oscillation: Normalized SLP differences between 
Ponta Delgada, Azores and Stykkisholmur, Iceland 

AO Arctic Oscillation: Defined as the _first principal component of SLP 
poleward of 20° N 

PDO Pacific Decadel Oscillation: Derived as the leading principal 
component of monthly SST anomalies in the North Pacific Ocean, 
poleward of 20° N 

QBO Quasi-Biennial Oscillation Index: Measures the regular variation 
of zonal (i.e. east-west) strato-spheric winds above the equator 

CTI Cold Tongue Index: Captures SST variations in the cold tongue 
region of the equatorial Pacific Ocean (6° N-6° S, 180° -90° W) 

WP Western Pacific: Represents a low-frequency temporal function of 
the ‘zonal dipole' SLP spatial pattern involving the Kamchatka 
Peninsula, southeastern Asia and far western tropical and 
subtropical North Pacific 

NINO1+2 Sea surface temperature anomalies in the region bounded by 80° W-
90° W and 0° -10° S 

NINO3 Sea surface temperature anomalies in the region bounded by 90° W-
150° W and 5° S-5° N 

NINO3.4 Sea surface temperature anomalies in the region bounded by 120° 

W-170° W and 5° S-5° N 
NINO4 Sea surface temperature anomalies in the region bounded by 150° 

W-160° W and 5° S-5° N 
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Discovering Climate Indices

Observation
– The El Nino phenomenon was first noticed by Peruvian fishermen 

centuries ago as a relationship between a persistent warm southward 
current around Christmas and a disastrous impact on fishing.

Eigenvalue techniques such as Principal Components 
Analysis (PCA/EOF) and Singular Value Decomposition 
(SVD) decompose a matrix into a set of spatial patterns and 
a set of temporal patterns.
– Components (patterns) must be orthogonal making physical 

interpretation difficult.
– Stronger patterns tend to hide weaker patterns  
– Requires domain knowledge to select the regions of interest

We applied SVD to the 
global Sea Surface 
Temperature (SST)
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Discovering Climate Indices via Data Mining

Clustering provides an alternative approach for 
finding candidate indices.
– Clusters represent ocean regions with relatively 

homogeneous behavior. 

– The centroids of these clusters are time series that 
summarize the behavior of these ocean areas, and thus, 
represent potential climate indices.

Shared Nearest Neighbor clustering finds groups of 
points (SST or SLP time series, in this case) that 
have relatively homogeneous behavior. 
– Alleviates problems with varying density and problems with 

clusters of different shapes and sizes.

– Can handle noisy data such as Earth Science data

– Finds the number of clusters automatically
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SLP and SST Clusters
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Evaluating Cluster Centroids as Potential Climate Indices

Four cases based on similarity to known indices:

Highly similar to known indices (corr ≥ 0.8) Similar to known indices (0.4 ≤ corr < 0.8)

Slightly similar to known indices (0.25 ≤ corr < 0.4) Not very similar to known indices (corr < 0.25)
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An SST Cluster Moderately Correlated to Known Indices
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Correlation of Known Indices with SST and 
SLP Cluster Centroids and SVD Components

Cluster Centroids SVD Components Climate 
Indices Best-shifted 

Correlation 
Best SST 

Centroid or 
SLP Pair 

Best-shifted 
Correlation 

Best SVD 
Component 

SOI -0.73 c13 - c20 0.61 3 (SLP) 
NAO 0.75 c7 - c10 0.60 2 (SLP) 
AO -0.76 c10 - c18 0.82 2 (SLP) 
PDO  0.52 20 -0.47 7 (SST) 
QBO -0.27 20 0.32 11 (SST) 
CTI  0.91 67 -0.63 3 (SST) 
WP -0.29 c13 - c20 0.27 11 (SLP) 
NINO1+2  0.92 94 -0.54 1 (SST) 
NINO3  0.95 67 -0.65 1 (SST) 
NINO 3.4  0.92 78 -0.68 1 (SST) 
NINO 4  0.92 75 -0.69 1 (SST) 

 
Red indicates higher magnitude of correlation. 

SVD components do not have as good correlation as the cluster centroids or centroid pairs in most cases.

With some of the El Nino Indices, the leading SVD component mixes some of the indices. 
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Finding New Patterns: Indian Monsoon Dipole Mode Index

Recently a new index, the Indian 
Ocean Dipole Mode index (DMI), 
has been discovered. 

DMI is defined as the difference 
in SST anomaly between the 
region 5S-5N, 55E-75E and the 
region 0-10S, 85E-95E.

DMI and is an indicator of a weak 
monsoon over the Indian 
subcontinent and heavy rainfall 
over East Africa.

We can reproduce this index as a 
difference of pressure indices of 
clusters 16 and 22.

Plot of cluster 16 – cluster 22 versus 
the Indian Ocean Dipole Mode index. 
(Indices smoothed using 12 month 
moving average.)
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Release: 03-51AR

NASA DATA MINING REVEALS A NEW HISTORY OF NATURAL DISASTERS 

NASA is using satellite data to paint a detailed global picture of the interplay among natural disasters, 
human activities and the rise of carbon dioxide in the Earth's atmosphere during the past 20 years.

Detection of Ecosystem Disturbances

Detection of sudden changes in greenness over 
extensive areas from these large global satellite 
data sets required development of automated 
techniques that take into account the timing, 
location, and magnitude of such changes.    

An algorithm was designed to identify any 
significant and sustained declines in FPAR during 
an 18 year time period. This algorithm transforms a 
non-stationary time series to a sequence of 
disturbance events. Techniques were also 
developed to discover associations between 
ecosystem disturbance regimes and historical 
climate anomalies. 

These algorithms and techniques have allowed 
Earth Science researchers to gain a deeper insight 
into the interplay among natural disasters, human 
activities and the rise of carbon dioxide in Earth's 
atmosphere during two recent decades.

http://amesnews.arc.nasa.gov/releases/2003/03_51AR.html

Potter, C., Tan, P., Steinbach, M.,
Klooster, S., Kumar, V., Myneni, 
R., Genovese, V., 2003. Major 
disturbance events in terrestrial 
ecosystems detected using global 
satellite data sets. Global Change 
Biology, July, 2003.



© Vipin Kumar Feb 5, 2004    15

82 8 3 84 8 5 86 8 7 88 8 9 90 9 1 92 9 3 94 9 5 96 9 7 98
-3

-2

-1

0

1

2

3
Average NP P  at  55.0 W ,  15 .0  S  vs . Average AO

NP P
AO

Understanding Global Teleconnections of Climate to Regional 
Model Estimates of Amazon Ecosystem Carbon Fluxes
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Discovered, using correlation analysis, a strong connection 
between the rainfall patterns generated by the South 
American monsoon system and terrestrial greenness over a 
large section of the southern Amazon region.  

This is the first direct evidence of large-scale effects of the 
Atlantic Ocean rainfall systems on yearly greenness changes 
in the Amazon region, and the finding has important 
implications for the impacts of "slash and burn" 
deforestation on this crucial ecosystem of the world.

Potter, C. Klooster, S., 
Steinbach, M., Tan, P., 
Kumar, V., Shekhar, S. and 
C. Carvalho, 2002. 
Understanding Global
Teleconnections of Climate 
to Regional Model 
Estimates of Amazon 
Ecosystem Carbon Fluxes. 
Global Change Biology
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Conclusions

We have demonstrated that clustering is a viable 
alternative to eigenvalue based approaches for the 
discovery of climate indices.  

– Can replicate many well-known climate indices

– Have also discovered variants of known indices that may be 
“better” for some regions

– Some indices may represent new Earth Science phenomena 

– No need for discovered indices to be orthogonal

– No need to pre-select the area to analyze

In our other work, we have shown that data mining can be 
useful for automatically detecting ecosystem 
disturbances, trends and associations.   
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